x(t)→ state || output, u(t)→ input
K→ gain, τ→time constant
Varying of τ changes the speed of the system, and varying the gain of the system changes the magnitude of the output with respect to the input
Laplace:
τs+11
Proportional Control:
We have here our controller (G1(s)=Kp), and our plant (G2(s)=τs+11)
This means that:
Our Steady State Response
R(s)C(s)Given: R(s)C(s)csscss=1+τs+1Kpτs+1Kp=1+τs+KpKp=s1 for step input=s(1+τs+Kp)Kp=s→0lim{sC(s)}=s→0lim{τs+1+KpKp}=1+KpKp=1+KpKp
Our Steady State Error
R(s)E(s)Given: R(s)E(s)essess=1+τs+1Kp1=1+τs+Kpτs+1=s1 for step input=s(1+τs+Kp)τs+1=s→0lim{sE(s)}=s→0lim{τs+1+Kpτs+1}=1+Kp1=1+Kp1
PD Control:
We have here our controller (G1(s)=Kp+Kds), and our plant (G2(s)=τs+11)
Once again, if we assume a unity step input, or R(s)=s1:
Our Steady State Response
R(s)C(s)Given: R(s)C(s)csscss=1+τs+1Kp+Kdsτs+1Kp+Kds=1+(τ+Kd)s+KpKp+Kds=s1 for step input=s(1+(τ+Kd)s+Kp)Kp+Kds=s→0lim{sC(s)}=s→0lim{1+(τ+Kd)s+KpKp+Kds}=1+KpKp=1+KpKp
Our Steady State Error
R(s)E(s)Given: R(s)E(s)essess=1+τs+1Kp+Kds1=1+(τ+Kd)s+Kpτs+1=s1 for step input=s(1+(τ+Kd)s+Kp)τs+1=s→0lim{sE(s)}=s→0lim{1+(τ+Kd)s+Kpτs+1}=1+Kp1=1+Kp1
Closed Loop Time Constant
τcl=Kp+1τ+Kd
Integral Control
We have here our controller (G1(s)=sKi), and our plant (G2(s)=τs+11)
So it follows: